Today you will be using the...

- Discriminant to determine the number and type of solutions for a quadratic function
- Quadratic formula to solve quadratic functions

The Discriminant

$$
b^{2}-4 a c
$$

- small part of the quadratic equation
- used to determine the number and type of solutions (x-intercepts, roots, or zeros) to a quadratic function
- equation must be written in standard form: $a x^{2}+b x+c=0$

Value of Discriminant	Type and Number of Solutions			
Positive Discriminant $b^{2}-4 a c>0$	Two Real Solutions			
Discriminant is Zero				
$b^{2}-4 a c=0$			\quad	One Real Solution
:---:				
Negative Discriminant				
$b^{2}-4 a c<0$	\quad	No Real Solution		
:---:				
(two imaginary solutions)				

The Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Works for solving ANY quadratic equation-equation must be written in standard form: $a x^{2}+b x+c=0$
- Best used when the quadratic expression is not factorable

Directions: Find the discriminant of the following problems and state the nature and the number of solutions. Use the quadratic formula to determine the solutions and draw a quick sketch of the graph.

$x^{2}-8 x+16=0$	$-5 x^{2}+x+1=0$	$8 x^{2}+8 x+3=0$
$a=\quad b=\quad c=$	$a=\quad b=\quad c=$	$a=\quad b=\quad c=$
Discriminant and \# of Solutions	Discriminant and \# of Solutions	Discriminant and \# of Solutions
Quadratic Formula	Quadratic Formula	Quadratic Formula

Directions: Solve using the quadratic formula. Remember, it must be in STANDARD FORM first $\left(a x^{2}+b x+c=0\right)$!

$$
x^{2}+3 x=2 \quad a=\quad b=\quad c=
$$

$$
x^{2}+18=10 x \quad a=\quad b=\quad c=
$$

$$
x^{2}=x+30 \quad a=\quad b=\quad c=
$$

